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Frequency domain analysis of linear circuits 
using synchronous detection 

 
Introduction 

In this experiment, we will study the behavior of simple electronic circuits whose re-

sponse varies as a function of frequency. Our main objective in this lab is to introduce 

you to synchronous detection—a technique for characterizing systems that exhibit com-

plex response. By complex response, we mean that the response of a system to a 

mono-frequency drive contains two components: a component that is in-phase with the 

drive (in-phase component) and a component that is 90° out-of-phase with the drive 

(quadrature component.)  

 One way to obtain the frequency response is to drive the system at a single frequen-

cy and measure the response of the system at this frequency. The frequency can then 

be swept to obtain the full frequency response of the system. Lock-in detectors measure 

the component of the signal that has a definite phase relationship to a reference signal 

(in most cases, the reference would be the signal used to drive the system.) Lock-in 

amplifiers have two outputs – an in-phase or X-output, that measures the input signal 

that is in-phase with the reference, and a quadrature or Y-output, that measures the 

signal that is 90° out of phase with the reference. In this lab, we will use the Stanford 

Research Systems SR830 lock-in amplifier. A great introduction to lock-in detection is 

given in the SR830 manual, which is included at the end of this manual.   

As an example of a system that exhibits a frequency dependent response, consider 

a damped driven harmonic oscillator described by the following differential equation 
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where, ( ) j tF t a e ω−= is the drive at frequency ω . The steady-state solution to the above 

equation is given by 
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For a real, we have 
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Recall, cos sinj te t j tω ω ω− = −  and 1j = − . We see that that the response of the system 

to a pure cosine drive ( Re[ ( )] cosF t a tω= ) contains both a cosine term (in-phase with 

drive) and a sine term (90° out-of-phase.) In general, we can express the system re-

sponse to a mono-frequency drive at frequency ω  in terms of a complex response func-

tion ( ) ( ) ( )R IH H jHω ω ω= + . 

 ( ) ( ) ( )x t H F tω=  (1.4) 

For the case of the damped driven harmonic oscillator, 
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In practice, ( )H ω is measured by driving the system at a single frequency and compar-

ing the phase of the response relative to the drive. The coefficients of the sine and co-

sine terms in (1.3) can be obtained by performing the following calculation.  
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As we shall see, a lock-in amplifier performs the operations specified by (1.6) to obtain 

the coefficients of the in-phase and quadrature response as a function of frequency. In 

so doing, it allows us to find ( )RH ω  and ( )IH ω . A functional representation of a lock-in 

detector is shown in Fig. 1. All lock-in amplifiers are made up of three basic blocks: (1) a 

phase-locked-loop (PLL) circuit, (2) mixers that multiply the input signal and the in-

phase and quadrature clock signals, and (3) low-pass filters at the output of the mixers. 

The PLL circuit produces a sinusoidal clock output that has the same frequency and 

phase as the reference signal. The reference signal is sent to phase-shifter that produc-
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es a clock signal that is 90° out of phase with respect to the reference. The two mixers 

multiply each clock signal with the input signal.  

  

The output of the mixers contain a constant term and a term at frequency 2ω . 
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A low-pass filter is used to remove the high frequency signal at ω2 and only pass the 

constant term. In this way, the filters perform the same function as integrating over one 

period. 

 
Figure 1: Schematic of lock-in detection. 
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Frequency Domain Measurement of Complex Impedance 

 

In this lab, you will analyze the frequency response of the circuits shown in Fig. 1 us-

ing lock-in detection.  

 

Let’s begin by deriving the response function for each circuit.  
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As an example, we’ll outline the derivation for the high-pass filter shown in Fig. 1(A). In 

order to find the voltage across R , we first apply Kirchoff’s laws to find the current pass-

ing through R .   
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Here, Z  is the impedance of the series combination of cZ j C= − ω  and R . 
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and 
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Figure 1: Different RLC circuits for frequency analysis: (A) high-pass filter; (B) low-pass 

filter; (C) series RLC resonant circuit. In your analysis, it will be helpful to recall the follow-

ing expressions for the complex impedance for a capacitor and inductor: cZ j C= − ω  and 

LZ j L= ω . 
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thus, 
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Or, in polar form 
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We can see from  (1.13)  why this circuit is called a high-pass filter. If ω  is smaller than a 

cutoff frequency given by 1c RCω = , then 1out inV V < . Far above this frequency, 

1out inV V → . Thus, the circuit filters out low frequencies and allows high frequencies to 

pass. In this exercise, we will use a lock-in amplifier to measure both the real and im-

aginary parts of ( )H ω . To see how this is accomplished, it is convenient to represent 

the input voltage and output voltages as the real part of complex quantities. 
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Working through some algebra, we find 
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While the input signal is only proportional to cos tω , the output contains both cos tω  and 

sin tω  terms. The lock-in amplifier has two inputs: 1) a reference signal ( )refV t that has 

the same frequency and phase of the drive signal ( )inV t and 2) the signal to be analyzed 

( )outV t . The in-phase (or X-output) of the lock-in amplifier will thus be proportional to the 

RMS-amplitude of the cos tω  part and the quadrature (or Y output) will be proportional 

to the RMS-amplitude of the sin tω part. 
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The factor of 1 2  is there because the output of the lock-in amplifier gives root-mean-

square (RMS) not peak amplitudes. ( )H ω can be found directly from (1.16). 
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The response function for parts (B) and (C) are found using the procedure outlined 

above. 

 

Measurement Procedure 
The SR830 comes with a sine-wave function generator output which you will use to 

drive the circuit. Note that the SR830 function generator output is in V-RMS, so you do 

not need to include the factor of 2  is (1.16) or (1.17). When the lock-in reference is set 

to “Internal,” the reference is locked to the sine wave output of the lock-in. outV  should 

be connected to the A-input of the SR830. The sine wave generator of the SR830 has 

50 W output  impedance, thus the magnitude of the impedance of your circuit should be 

greater than 500 W over the frequency range of the measurement in order to ensure that 

the voltage across the circuit is close to the output voltage of the function generator. 

Part I: 
 For each circuit parts (A) and (B), pick an RC combination that gives a cutoff fre-

quency 1 2cf RCπ=  between 1 - 5 kHz. Keep the value of R between 0.5-10 kΩ to en-

sure the circuit impedance is much greater than the output impedance of the SR830 

function generator. Place the circuit components on the breadboard, then connect the 

(A)   High-pass filter 
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Table 1: Response functions for the circuits in Fig. 1. 
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inV to the sine wave output of the SR830 and outV  to the A-input. For part (C), use a limit-

ing resistor limit 0.1R M= Ω  , L = 20-50 mH (air filled inductor), C = 1.0 μF, and R = 5 Ω. 

Drive the circuit with 1.0 V-rms from the function generator. The sensitivity of the lock-in 

should be set to 1 V/V and the time constant to 300 ms - 12 dB. These values are 

meant to be guidelines. You are encouraged to experiment with the lock-in settings—in 

fact, the main point of this exercise is to familiarize you to lock-in detection. The sensi-

tivity sets the gain of the amplifier after the low-pass filters. The time constant sets the 

cutoff frequency of the low-pass filters. You will notice that the larger the time constant, 

the more stable the readings appear. However, larger time constants also mean that the 

output responds more slowly to any changes. When sweeping frequency, it is important 

 
Figure 2: Lock-in measurements taken for a low-pass filter with R = 9950 Ω and 
C = 5.37 nF. (A) X-output proportional to ( )RH ω , (B) Y-output proportional to ( )IH ω , 
(C) and (D) are derived from the measured data. 
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to have the time constant of the lock-in to be faster than the sweep rate so that the out-

put can track the changing response. Set the two outputs to X and Y. Both the X and Y 

output values can be directly read off from the front panel display. 

 You will measure the real and imaginary parts of the response function by manually 

sweeping the frequency and recording the X and Y outputs from the lock-in amplifier. 

Sample data taken for the low-pass filter (Fig. 1(B)) is shown in Fig. 2. Input the data 

into Origin and make log-log plot for each channel. Use the nonlinear fit option to fit the 

data to the expected form. Calculate the magnitude and phase of the response function 

from your data and fit these also using the expected form. All fit functions can be ob-

tained directly from Table 1. Measure the R, C and L using the impedance analyzer and 

compare to the fitted data. 

Part II: 
 The lock-in amplifier can also be used to measure the response at a harmonic of the 

drive frequency. This feature is particularly useful when characterizing non-linear sys-

tems which create harmonic dis-

tortion. As an introduction to this 

feature of the lock-in, you will use 

the lock-in amplifier to analyze the 

harmonic content of a square 

wave. A periodic waveform can be 

expressed as a sum of sines and 

cosines whose frequencies are multiples of the fundamental frequency. The frequency 

content of the square waveform shown in Fig. 3 can be analyzed by expanding it in 

terms of a Fourier series. 
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Here, 0T  is the period of the waveform, and the Fourier coefficients are given by 

 
Figure 3: Square waveform 
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Use the Wavetek function generator 

to synthesize the square waveform with 

a 50% duty cycle. Set the function to bi-

polar square wave with a peak amplitude 

of 0.1 V and a frequency of 100 Hz. 

Connect the function output across a 1 

kΩ resistor and connect output voltage to 

the A-input of the SR830 lock-in amplifi-

er. For this measurement, the reference signal must be supplied by the Wavetek. Con-

nect the Snyc output of the Wavetek to the reference input of the lock-in and set the 

reference source to external. Select the harmonic number by pressing the Harm button. 

You can select harmonics up to a maximum frequency of 100 kHz. Measure the X and 

Y output for harmonics up to N=20. Calculate the Fourier coefficients for the square 

wave analytically using Eq. (1.19) and compare to your measurement. 

  

 
Figure 4: Setup for square waveform 
measurement. 
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Report 
 
1. From your data in part I, calculate the real and imaginary parts as well as the magni-

tude and phase of the response function for the three circuits. Make a log-log plot for 

each component and fit it using the derived functions given in Table 1. 

 

2. Compare the parameters obtained from your fits to the expected value. Report all er-

rors in the fitted values and compare this error to your uncertainty in the measured val-

ues of R, L and C. 

 

3. In part II, plot of amplitudes obtained from the lock-in amplifier vs. 1/n (n is the har-

monic number) for a square waveform for the first 20 harmonics. Calculate the Fourier 

coefficients for the square waveform and compare to your data. 


